CONTENTS

PREFACE v
Chapter 1 Linear Functions 1
1.1 Simultaneous equations 2
1.2 Numbers, notation, and geometry 13
1.3 Linear transformations 28
1.4 Linear subspaces of R^{n} 40
1.5 Rank + nullity $=$ dimension 53
1.6 Invertible matrices 59
1.7 Eigenvectors and change of basis 76
1.8 Complex numbers 85
1.9 Space geometry 93
1.10 Abstract notions of linearity 105
1.11 Inner products 110
Miscellaneous problems 121
Chapter 2 Notions of Calculus 126
2.1 Convergence of sequences 129
2.2 Series 137
2.3 Tests for convergence 145
2.4 Convergence in R^{n} 153
2.5 Continuity 159
2.6 Calculus of one variable 165
2.7 Multiple integration 173
2.8 Partial differentiation 185
2.9 Improper integrals 195
2.10 The space of continuous functions 201
2.11 The fixed point theorem 211
2.12 Summary 219
Miscellaneous problems 222
Chapter 3 Ordinary Differential Equations 227
3.1 Differentiation 228
3.2 Taylor's formula 240
3.3 Differential equations 250
3.4 Some techniques for solving equations 259
3.5 Existence theorems 266
3.6 Linear differential equations 275
3.7 Second-order linear equations 289
3.8 Summary 298
Miscellaneous problems 302
Chapter 4 Curves 307
4.1 Parametrization of curves 313
4.2 Arc length 331
4.3 Local geometry of curves 349
4.4 Curves in space 359
4.5 Varying a curve in the plane 365
4.6 Vector fields and fluid flows 380
4.7 Summary 393
Miscellaneous problems 397
Chapter 5 Series of Functions 400
5.1 Convergence 401
5.2 The fundamental theorem of algebra 406
5.3 Constant coefficient linear differential equations 410
5.4 Solutions in series 414
5.5 Power series 421
5.6 Complex differentiation 428
5.7 Differential equations with analytic coefficients 434
5.8 Infinitely flat functions 441
5.9 Summary 445
Miscellaneous problems 448
Chapter 6 Functions on the Circle (Fourier Analysis) 452
6.1 Approximation by trigonometric polynomials 453
6.2 Laplace's equation 467
6.3 Fourier sine and cosine series 476
6.4 The one-dimensional wave and heat equations 482
6.5 The geometry of Fourier expansions 495
6.6 Differential equations on the circle 503
6.7 Taylor series and Fourier series 509
6.8 Summary 512
Miscellaneous problems 517
Chapter 7 Line Integrals and Green's Theorem 525
7.1 The differential 527
7.2 Coordinate changes 534
7.3 Differential forms 547
7.4 Work and conservative fields 552
7.5 Integration of differential forms 560
7.6 Applications of Green's theorem 574
7.7 The Cauchy integral formula 584
7.8 Summary 602
Miscellaneous problems 607
Chapter 8 Potential Theory in Three Dimensions 611
8.1 Divergence and the equation of continuity 613
8.2 Curl and rotation 624
8.3 Surfaces 635
8.4 Surface integrals and Stokes' theorem 657
8.5 The divergence theorem 666
8.6 Dirichlet's principle 674
8.7 Summary 686
Miscellaneous problems 690
ANSWERS TO SELECTED EXERCISES 694
INDEX 723

